

-
Course covers Python, Statistics, Database essentials, Big Data, Data Wrangling, Numpy, Pandas
-
Intensive 1-month Classroom/LVC Training and 2 months LIVE Project mentoring.
-
Unlimited access to Data Science Cloud Lab for practice.
CERTIFIED DATA ENGINEER COURSES

4.9 (21,693) reviews

Accredited by

3+ Live
Projects

Skill AI
Certificate
CERTIFIED DATA ENGINEER CERTIFICATION AUTHORITIES



.png)
Live Virtual
Instructor Led Live Online
₹55,221


NASSCOM® Certification
6-Month / 200 Learning Hours
80-Hour Live Online Training
10 Capstone & 1 Client Project
365 Days Flexi Pass + Cloud Lab
Internship + Job Assistance




CERTIFIED DATA ENGINEER COURSE FEE
Blended Learning
Self Learning + Live Mentoring
₹32,505


Self Learning + Live Mentoring
NASSCOM® Certification
1 Year Access To Elearning
10 Capstone & 1 Client Project
Job Assistance
24*7 Leaner assistance and support




Financing Options
We are dedicated to making our programs accessible. We are committed to helping you find a way to budget for this program and offer a variety of financing options to make it more economical.
Pay In Installments, as low as
We have partnered with the following financing companies to provide competitive finance options at as low as
0% interest rates with no hidden cost.


Admission Closes On : 31st December 2026

WHY SKILL AI INSTITUTE FOR CERTIFIED DATA ENGINEER COURSES

Expert Trainers
PH.Ds AND INDUSTRY EXPERTS
ELITE FACULTY FROM PRESTIGIOUS
UNIVERSITIES WITH DEEP RESEARCH
AND COACHING EXPERTISE
Specialized Syllabus
SPECIALIZED SYLLABUS FOR MANAGERS
PERSONALIZED COUNSELLING FOR CAREER
ENHANCEMENT IN MANAGERIAL ROLES
FOCUSED ON DATA SCIENCE FOR DECISION MAKING,
MANAGING DATA SCIENCE PROJECTS WITH ESSENTIAL TECHNICAL OVERVIEW
Career Guidance
EXPERT COUNSELORS
TECHNIQUES FOR SCENARIOS WITH CERTAINTY,
LOW UNCERTAINTY AND HIGH CERTAINTY FROM
DECISION TREE TO MONTE CARLO SIMULATION
5 Case Studies
PRACTICAL DECISION-MAKING CASES
SYLLABUS OF CERTIFIED DATA ENGINEER COURSES
MODULE 1: DATA ENGINEERING INTRODUCTION
• What is Data Engineering?
• Data Engineering scope
• Data Ecosystem, Tools and platforms
• Core concepts of Data engineeringMODULE 2: DATA SOURCES AND DATA IMPORT
• Types of data sources
• Databases: SQL and Document DBs
• Managing Big dataMODULE 3: DATA INTEGRITY AND PRIVACY
• Data integrity basics
• Various aspects of data privacy
• Various data privacy frameworks and standards
• Industry related norms in data integrity and privacy: data engineering perspectiveMODULE 4: DATA ENGINEERING ROLE
• Who is a data engineer?
• Various roles of data engineer
• Skills required for data engineering
• Data Engineer Collaboration with Data Scientist and other roles.MODULE 1: PYTHON BASICS
• Introduction of python
• Installation of Python and IDE
• Python objects
• Python basic data types
• String functions part
• String functions part
• Python OperatorsMODULE 2: PYTHON CONTROL STATEMENTS
• IF Conditional statement, IF-ELSE
• NESTED IF
• Python Loops Basics, WHILE Statement
• BREAK and CONTINUE statements
• FOR statementsMODULE 3: PYTHON PACKAGES
• Introduction to Packages in Python
• Datetime Package and MethodsMODULE 4: PYTHON DATA STRUCTURES
• Basic Data Structures in Python
• Basics of List
• List methods
• Tuple: Object and methods
• Sets: Object and methods
• Dictionary: Object and methodsMODULE 5: PYTHON FUNCTIONS
• Functions basics
• Function Parameter passing
• Lambda functions
• Map, reduce, filter functionsMODULE 1 : OVERVIEW OF STATISTICS
• Introduction to Statistics: Descriptive And Inferential Statistics
• a.Descriptive Statistics
• b.Inferential Statistis
• Basic Terms Of Statistics
• Types Of Data
MODULE 2 : HARNESSING DATA
• Random Sampling
• Sampling With Replacement And Without Replacement
• Cochran's Minimum Sample Size
• Types of Sampling
• Simple Random Sampling
• Stratified Random Sampling
• Cluster Random Sampling
• Systematic Random Sampling
• Multistage Sampling
• Sampling Error
• Methods Of Collecting DataMODULE 3 : EXPLORATORY DATA ANALYSIS
• Exploratory Data Analysis Introduction
• Measures Of Central Tendencies, Measure of Spread
• Data Distribution Plot: Histogram
• Normal Distribution
• Z Value / Standard Value
• Empherical Rule and Outliers
• Central Limit Theorem
• Normality Testing
• Skewness & Kurtosis
• Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
• Covariance and CorrelationMODULE 4 : HYPOTHESIS TESTING
• Hypothesis Testing Introduction
• Types of Hypothesis
• P- Value, Crtical Region
• Types of Hypothesis Testing: Parametric, Non-Parametric
• Hypothesis Testing Errors : Type I And Type II
• Two Sample Independent T-test
• Two Sample Relation T-test
• One Way Anova Test
• Application of Hypothesis Testing (Proposed)MODULE 1: DATA WAREHOUSE FOUNDATION
• Data Warehouse Introduction
• Database vs Data Warehouse
• Data Warehouse Architecture
• Data Lake house
• ETL (Extract, Transform, and Load)
• ETL vs ELT
• Star Schema and Snowflake Schema
• Data Mart Concepts
• Data Warehouse vs Data Mart —Know the Difference
• Data Lake Introduction architecture
• Data Warehouse vs Data LakeMODULE 2: DATA PROCESSING
• Python NumPy Package Introduction
• Array data structure, Operations
• Python Pandas package introduction
• Data structures: Series and DataFrame
• Importing data into Pandas DataFrame
• Data processing with Pandas
• Data Warehouse vs Data LakeMODULE 3: DOCKER AND KUBERNETES FOUNDATION
• Docker Introduction
• Docker Vs.VM
• Hands-on: Running our first container
• Common commands (Running, editing,stopping,copying and managing images)YAML(Basics)
• Publishing containers to DockerHub
• Kubernetes Orchestration of Containers
• Docker swarm vs kubernetesMODULE 4: DATA ORCHESTRATION WITH APACHE AIRFLOW
• Data Orchestration Overview
• Apache Airflow Introduction
• Airflow Architecture
• Setting up Airflow
• TAG and DAG
• Creating Airflow Workflow
• Airflow Modular Structure
• Executing AirflowMODULE 5: DATA ENGINEERING PROJECT
• Setting Project Environment
• Data pipeline setup
• Hands-on: build scalable data pipelinesMODULE 1 : AWS DATA SERVICES INTRODUCTION
• AWS Overview and Account Setup
• AWS IAM Users, Roles and Policies
• AWS S overview
• AWS EC overview
• AWS Lamdba overview
• AWS Glue overview
• AWS Kinesis overview
• AWS Dynamodb overview
• AWS Athena overview
• AWS Redshift overviewMODULE 2 : DATA PIPELINE WITH GLUE
• AWS Glue Crawler and setup
• ETL with AWS Glue
• Data Ingesting with AWS GlueMODULE 3 : DATA PIPELINE WITH AWS KINESIS
• AWS Kinesis overview and setup
• Data Streams with AWS Kinesis
• Data Ingesting from AWS S using AWS KinesisMODULE 4 : DATA WAREHOUSE WITH AWS REDSHIFT
• AWS Redshift Overview
• Analyze data using AWS Redshift from warehouses, data lakes and operations DBs
• Develop Applications using AWS Redshift cluster
• AWS Redshift federated Queries and SpectrumMODULE 5 : DATA PIPELINE WITH AZURE SYNAPSE
• Azure Synapse setup
• Understanding Data control flow with ADF
• Data Pipelines with Azure Synapse
• Prepare and transform data with Azure Synapse AnalyticsMODULE 6 : STORAGE IN AZURE
• Create Azure storage account
• Connect App to Azure Storage
• Azure Blob Storage
MODULE 7: AZURE DATA FACTORY
• Azure Data Factory Introduction
• Data transformation with Data Factory
• Data Wrangling with Data Factory
MODULE 8 : AZURE DATABRICKS
• Azure databricks introduction
• Azure databricks architecture
• Data Transformation with databricks
MODULE 9 : AZURE RDS
• Creating a Relational Database
• Querying in and out of Relational Database
• ETL from RDS to databricks
MODULE 10 : AZURE RDS
• Hands-on Project Case-study
• Setup Project Development Env
• Organization of Data Sources
• AZURE/AWS services for Data Ingestion
• Data Extraction TransformationMODULE 1: GIT INTRODUCTION
• Purpose of Version Control
• Popular Version control tools
• Git Distribution Version Control
• Terminologies
• Git Workflow
• Git ArchitectureMODULE 5: UNDOING CHANGES
• Editing Commits
• Commit command Amend flag
• Git reset and revertMODULE 2: GIT REPOSITORY and GitHub
• Git Repo Introduction
• Create New Repo with Init command
• Copying existing repo
• Git user and remote node
• Git Status and rebase
• Review Repo History
• GitHub Cloud Remote RepoMODULE 3: COMMITS, PULL, FETCH AND PUSH
• Code commits
• Pull, Fetch and conflicts resolution
• Pushing to Remote RepoMODULE 4: TAGGING, BRANCHING AND MERGING
• Organize code with branches
• Checkout branch
• Merge branchesMODULE 5: UNDOING CHANGES
• Editing Commits
• Commit command Amend flag
• Git reset and revertMODULE 6: GIT WITH GITHUB AND BITBUCKET
• Creating GitHub Account
• Local and Remote Repo
• Collaborating with other developersMODULE 1 : DATABASE INTRODUCTION
-
DATABASE Overview
-
Key concepts of database management
-
CRUD Operations
-
Relational Database Management System
-
RDBMS vs No-SQL (Document DB)
MODULE 3 : DATA TYPES AND CONSTRAINTS
-
Numeric, Character, date time data type
-
Primary key, Foreign key, Not null
-
Unique, Check, default, Auto increment
MODULE 2 : SQL BASICS
-
Introduction to Databases
-
Introduction to SQL
-
SQL Commands
-
MY SQL workbench installation
-
Comments
-
import and export dataset
MODULE 3 : DATA TYPES AND CONSTRAINTS
-
Numeric, Character, date time data type
-
Primary key, Foreign key, Not null
-
Unique, Check, default, Auto increment
MODULE 4 : DATABASES AND TABLES (MySQL)
-
Create database
-
Delete database
-
Show and use databases
-
Create table, Rename table
-
Delete table, Delete table records
-
Create new table from existing data types
-
Insert into, Update records
-
Alter table
-
MODULE 1: BIG DATA INTRODUCTION
• Big Data Overview
• Five Vs of Big Data
• What is Big Data and Hadoop
• Introduction to Hadoop
• Components of Hadoop Ecosystem
• Big Data Analytics IntroductionMODULE 2: HDFS AND MAP REDUCE
• HDFS – Big Data Storage
• Distributed Processing with Map Reduce
• Key Terms: Output Format
• Partitioners Combiners Shuffle and Sort
• Hands-on Map Reduce taskMODULE 3: PYSPARK FOUNDATION
• PySpark Introduction
• Resilient distributed datasets (RDD),Working with RDDs in PySpark, Spark Context , Aggregating Data with Pair RDDs
• Spark Databricks
• Spark StreamingMODULE 1: SPARK SQL and HADOOP HIVE
• Introducing Spark SQL
• Spark SQL vs Hadoop Hive
• Working with Spark SQL Query LanguageMODULE 2: KAFKA and Spark
• Kafka architecture
• Kafka workflow
• Configuring Kafka cluster
• OperationsMODULE 3: KAFKA and Spark
• Creating an HDFS cluster with containers
• Creating pyspark cluster with containers
• Processing data on hdfs cluster with pyspark clusterMODULE 1: TABLEAU FUNDAMENTALS
• Introduction to Business Intelligence & Introduction to Tableau
• Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
• Bar chart, Tree Map, Line Chart
• Area chart, Combination Charts, Map
• Dashboards creation, Quick Filters
• Create Table Calculations
• Create Calculated Fields
• Create Custom HierarchiesMODULE 2: POWER-BI Basics
• Power BI Introduction
• Basics Visualizations
• Dashboard Creation
• Basic Data Cleaning
• Basic DAX FUNCTIONMODULE 3: DATA TRANSFORMATION TECHNIQUES
• Exploring Query Editor
• Data Cleansing and Manipulation:
• Creating Our Initial Project File
• Connecting to Our Data Source
• Editing Rows
• Changing Data Types
• Replacing ValuesMODULE 4: CONNECTING TO VARIOUS SOURCES
• Connecting to a CSV File
• Connecting to a Webpage
• Extracting Characters
• Splitting and Merging Columns
• Creating Conditional Columns
• Creating Columns from Examples
• Create Data Model