top of page
SKILLAI.png
w13.jpg
  • Course covers Python, Statistics, Database essentials, Big Data, Data Wrangling, Numpy, Pandas

  • Intensive 1-month Classroom/LVC Training and 2 months LIVE Project mentoring.

  • Unlimited access to Data Science Cloud Lab for practice.

CERTIFIED DATA ENGINEER COURSES

download__1_-removebg-preview.png
4.9 (21,693) reviews
opop_edited.png
Accredited by
Screenshot_2025-12-05_180311-removebg-preview.png
3+ Live
Projects
Gemini_Generated_Image_s0vt7ks0vt7ks0vt-removebg-preview_edited.png
Skill AI 
Certificate 
CERTIFIED DATA ENGINEER CERTIFICATION AUTHORITIES
Nasscom-logo-svg.png
SKILLAI.png
Nasscom-logo-svg.png
download__2_-removebg-preview (1).png

Live Virtual

Instructor Led Live Online

₹55,221
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

NASSCOM® Certification

6-Month / 200 Learning Hours

80-Hour Live Online Training

10 Capstone & 1 Client Project

365 Days Flexi Pass + Cloud Lab

Internship + Job Assistance

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
CERTIFIED DATA ENGINEER COURSE FEE

Blended Learning

Self Learning + Live Mentoring

₹32,505
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Self Learning + Live Mentoring

NASSCOM® Certification

1 Year Access To Elearning

10 Capstone & 1 Client Project

Job Assistance

24*7 Leaner assistance and support

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Classroom

In - Person Classroom Training

₹60,432
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

NASSCOM® Certification

6-Month | 200 Learning Hours

32-Hour Classroom Sessions

10 Capstone & 1 Client Project

Cloud Lab Access

Internship + Job Assistance

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
Financing Options

We are dedicated to making our programs accessible. We are committed to helping you find a way to budget for this program and offer a variety of financing options to make it more economical.

Pay In Installments, as low as
We have partnered with the following financing companies to provide competitive finance options at as low as
0% interest rates with no hidden cost.
495-4954654_download-hd-1-bajaj-finserv-logo-png-transparent-removebg-preview.png
shopse-removebg-preview.png
Admission Closes On : 31st December 2026
gradient.png

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

WHY SKILL AI INSTITUTE FOR CERTIFIED DATA ENGINEER COURSES
Gemini_Generated_Image_dmhcjzdmhcjzdmhc-removebg-preview_edited.png

Expert Trainers

PH.Ds AND INDUSTRY EXPERTS

ELITE FACULTY FROM PRESTIGIOUS
UNIVERSITIES WITH DEEP RESEARCH
AND COACHING EXPERTISE

Specialized Syllabus

SPECIALIZED SYLLABUS FOR MANAGERS

PERSONALIZED COUNSELLING FOR CAREER​
ENHANCEMENT IN MANAGERIAL ROLES
FOCUSED ON DATA SCIENCE FOR DECISION MAKING,
MANAGING DATA SCIENCE PROJECTS WITH ESSENTIAL TECHNICAL OVERVIEW

Career Guidance

EXPERT COUNSELORS

TECHNIQUES FOR SCENARIOS WITH CERTAINTY,
LOW UNCERTAINTY AND HIGH CERTAINTY FROM
DECISION TREE TO MONTE CARLO SIMULATION

5 Case Studies

PRACTICAL DECISION-MAKING CASES

SYLLABUS OF CERTIFIED DATA ENGINEER COURSES
  • MODULE 1: DATA ENGINEERING INTRODUCTION

    • What is Data Engineering?
    • Data Engineering scope
    • Data Ecosystem, Tools and platforms
    • Core concepts of Data engineering

    MODULE 2: DATA SOURCES AND DATA IMPORT

    • Types of data sources
    • Databases: SQL and Document DBs
    • Managing Big data

    MODULE 3: DATA INTEGRITY AND PRIVACY

    • Data integrity basics
    • Various aspects of data privacy
    • Various data privacy frameworks and standards
    • Industry related norms in data integrity and privacy: data engineering perspective

    MODULE 4: DATA ENGINEERING ROLE

    • Who is a data engineer?
    • Various roles of data engineer
    • Skills required for data engineering
    • Data Engineer Collaboration with Data Scientist and other roles.

  • MODULE 1: PYTHON BASICS

    • Introduction of python
    • Installation of Python and IDE
    • Python objects
    • Python basic data types
    • String functions part 
    • String functions part 
    • Python Operators

    MODULE 2: PYTHON CONTROL STATEMENTS

    • IF Conditional statement, IF-ELSE
    • NESTED IF
    • Python Loops Basics, WHILE Statement
    • BREAK and CONTINUE statements
    • FOR statements

    MODULE 3: PYTHON PACKAGES

    • Introduction to Packages in Python
    • Datetime Package and Methods

    MODULE 4: PYTHON DATA STRUCTURES

    • Basic Data Structures in Python
    • Basics of List
    • List methods
    • Tuple: Object and methods
    • Sets: Object and methods
    • Dictionary: Object and methods

    MODULE 5: PYTHON FUNCTIONS

    • Functions basics
    • Function Parameter passing
    • Lambda functions
    • Map, reduce, filter functions

  • MODULE 1 : OVERVIEW OF STATISTICS 

    • Introduction to Statistics: Descriptive And Inferential Statistics
    • a.Descriptive Statistics
    • b.Inferential Statistis
    • Basic Terms Of Statistics
    • Types Of Data

    MODULE 2 : HARNESSING DATA 

    • Random Sampling 
    • Sampling With Replacement And Without Replacement
    • Cochran's Minimum Sample Size
    • Types of Sampling 
    • Simple Random Sampling
    • Stratified Random Sampling
    • Cluster Random Sampling
    • Systematic Random Sampling
    • Multistage Sampling 
    • Sampling Error
    • Methods Of Collecting Data

    MODULE 3 : EXPLORATORY DATA ANALYSIS 

    • Exploratory Data Analysis Introduction
    • Measures Of Central Tendencies, Measure of Spread
    • Data Distribution Plot: Histogram
    • Normal Distribution
    • Z Value / Standard Value
    • Empherical Rule and Outliers
    • Central Limit Theorem
    • Normality Testing
    • Skewness & Kurtosis
    • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
    • Covariance and Correlation

    MODULE 4 : HYPOTHESIS TESTING 

    Hypothesis Testing Introduction 
    • Types of Hypothesis
    • P- Value, Crtical Region
    • Types of Hypothesis Testing: Parametric, Non-Parametric
    • Hypothesis Testing Errors : Type I And Type II
    • Two Sample Independent T-test
    • Two Sample Relation T-test
    • One Way Anova Test
    • Application of Hypothesis Testing (Proposed)

  • MODULE 1: DATA WAREHOUSE FOUNDATION

    • Data Warehouse Introduction
    • Database vs Data Warehouse
    • Data Warehouse Architecture
    • Data Lake house
    • ETL (Extract, Transform, and Load)
    • ETL vs ELT
    • Star Schema and Snowflake Schema
    • Data Mart Concepts
    • Data Warehouse vs Data Mart —Know the Difference
    • Data Lake Introduction architecture
    • Data Warehouse vs Data Lake

    MODULE 2: DATA PROCESSING

    • Python NumPy Package Introduction
    • Array data structure, Operations
    • Python Pandas package introduction
    • Data structures: Series and DataFrame
    • Importing data into Pandas DataFrame
    • Data processing with Pandas
    • Data Warehouse vs Data Lake

    MODULE 3: DOCKER AND KUBERNETES FOUNDATION

    • Docker Introduction
    • Docker Vs.VM
    • Hands-on: Running our first container
    • Common commands (Running, editing,stopping,copying and managing images)YAML(Basics)
    • Publishing containers to DockerHub
    • Kubernetes Orchestration of Containers 
    • Docker swarm vs kubernetes

    MODULE 4: DATA ORCHESTRATION WITH APACHE AIRFLOW

    • Data Orchestration Overview
    • Apache Airflow Introduction
    • Airflow Architecture
    • Setting up Airflow
    • TAG and DAG
    • Creating Airflow Workflow
    • Airflow Modular Structure
    • Executing Airflow

    MODULE 5: DATA ENGINEERING PROJECT

    • Setting Project Environment
    • Data pipeline setup
    • Hands-on: build scalable data pipelines

  • MODULE 1 : AWS DATA SERVICES INTRODUCTION 
    • AWS Overview and Account Setup
    • AWS IAM Users, Roles and Policies
    • AWS S overview
    • AWS EC overview
    • AWS Lamdba overview
    • AWS Glue overview
    • AWS Kinesis overview
    • AWS Dynamodb overview
    • AWS Athena overview
    • AWS Redshift overview

    MODULE 2 : DATA PIPELINE WITH GLUE

    • AWS Glue Crawler and setup
    • ETL with AWS Glue
    • Data Ingesting with AWS Glue

    MODULE 3 : DATA PIPELINE WITH AWS KINESIS 

    • AWS Kinesis overview and setup
    • Data Streams with AWS Kinesis
    • Data Ingesting from AWS S using AWS Kinesis

    MODULE 4 : DATA WAREHOUSE WITH AWS REDSHIFT 

    • AWS Redshift Overview
    • Analyze data using AWS Redshift from warehouses, data lakes and operations DBs
    • Develop Applications using AWS Redshift cluster
    • AWS Redshift federated Queries and Spectrum

    MODULE 5 : DATA PIPELINE WITH AZURE SYNAPSE 

    • Azure Synapse setup
    • Understanding Data control flow with ADF
    • Data Pipelines with Azure Synapse
    • Prepare and transform data with Azure Synapse Analytics

    MODULE 6 : STORAGE IN AZURE 

    • Create Azure storage account
    • Connect App to Azure Storage
    • Azure Blob Storage

    MODULE 7: AZURE DATA FACTORY

    • Azure Data Factory Introduction
    • Data transformation with Data Factory
    • Data Wrangling with Data Factory

    MODULE 8 : AZURE DATABRICKS

    • Azure databricks introduction
    • Azure databricks architecture
    • Data Transformation with databricks

    MODULE 9 : AZURE RDS

    • Creating a Relational Database
    • Querying in and out of Relational Database
    • ETL from RDS to databricks

    MODULE 10 : AZURE RDS

    • Hands-on Project Case-study
    • Setup Project Development Env
    • Organization of Data Sources
    • AZURE/AWS services for Data Ingestion
    • Data Extraction Transformation

  • MODULE 1: GIT INTRODUCTION

    • Purpose of Version Control
    • Popular Version control tools
    • Git Distribution Version Control
    • Terminologies
    • Git Workflow
    • Git Architecture

    MODULE 5: UNDOING CHANGES

    • Editing Commits
    • Commit command Amend flag
    • Git reset and revert

    MODULE 2: GIT REPOSITORY and GitHub

    • Git Repo Introduction
    • Create New Repo with Init command
    • Copying existing repo
    • Git user and remote node
    • Git Status and rebase
    • Review Repo History
    • GitHub Cloud Remote Repo

    MODULE 3: COMMITS, PULL, FETCH AND PUSH

    • Code commits
    • Pull, Fetch and conflicts resolution
    • Pushing to Remote Repo

    ​MODULE 4: TAGGING, BRANCHING AND MERGING

    • Organize code with branches
    • Checkout branch
    • Merge branches

    MODULE 5: UNDOING CHANGES

    • Editing Commits
    • Commit command Amend flag
    • Git reset and revert

    ​MODULE 6: GIT WITH GITHUB AND BITBUCKET

    • Creating GitHub Account
    • Local and Remote Repo
    • Collaborating with other developers

  • MODULE 1 : DATABASE INTRODUCTION 

    • DATABASE Overview

    • Key concepts of database management

    • CRUD Operations

    • Relational Database Management System

    • RDBMS vs No-SQL (Document DB)

    MODULE 3 : DATA TYPES AND CONSTRAINTS 

    • Numeric, Character, date time data type

    • Primary key, Foreign key, Not null

    • Unique, Check, default, Auto increment

    MODULE 2 : SQL BASICS 

    • Introduction to Databases

    • Introduction to SQL

    • SQL Commands

    • MY SQL  workbench installation

    • Comments

    • import and export dataset

    ​MODULE 3 : DATA TYPES AND CONSTRAINTS

    • Numeric, Character, date time data type

    • Primary key, Foreign key, Not null

    • Unique, Check, default, Auto increment 

    MODULE 4 : DATABASES AND TABLES (MySQL) 

    • Create database

    • Delete database

    • Show and use databases

    • Create table, Rename table

    • Delete table, Delete  table records

    • Create new table from existing data types

    • Insert into, Update records

    • Alter table

  • MODULE 1: BIG DATA INTRODUCTION

    • Big Data Overview
    • Five Vs of Big Data
    • What is Big Data and Hadoop
    • Introduction to Hadoop
    • Components of Hadoop Ecosystem
    • Big Data Analytics Introduction

    MODULE 2: HDFS AND MAP REDUCE

    • HDFS – Big Data Storage
    • Distributed Processing with Map Reduce
    • Key Terms: Output Format
    • Partitioners Combiners Shuffle and Sort
    • Hands-on Map Reduce task

    MODULE 3: PYSPARK FOUNDATION

    • PySpark Introduction
    • Resilient distributed datasets (RDD),Working with RDDs in PySpark, Spark Context , Aggregating Data with Pair RDDs
    • Spark Databricks
    • Spark Streaming

  • MODULE 1: SPARK SQL and HADOOP HIVE

    • Introducing Spark SQL
    • Spark SQL vs Hadoop Hive
    • Working with Spark SQL Query Language

    MODULE 2: KAFKA and Spark

    • Kafka architecture
    • Kafka workflow
    • Configuring Kafka cluster
    • Operations

    MODULE 3: KAFKA and Spark

    • Creating an HDFS cluster with containers
    • Creating pyspark cluster with containers
    • Processing data on hdfs cluster with pyspark cluster

  • MODULE 1: TABLEAU FUNDAMENTALS

    • Introduction to Business Intelligence & Introduction to Tableau
    • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
    • Bar chart, Tree Map, Line Chart
    • Area chart, Combination Charts, Map
    • Dashboards creation, Quick Filters
    • Create Table Calculations
    • Create Calculated Fields
    • Create Custom Hierarchies

    MODULE 2: POWER-BI Basics

    • Power BI Introduction 
    • Basics Visualizations
    • Dashboard Creation
    • Basic Data Cleaning
    • Basic DAX FUNCTION

    MODULE 3: DATA TRANSFORMATION TECHNIQUES

    • Exploring Query Editor
    • Data Cleansing and Manipulation:
    • Creating Our Initial Project File
    • Connecting to Our Data Source
    • Editing Rows
    • Changing Data Types
    • Replacing Values

    MODULE 4: CONNECTING TO VARIOUS SOURCES

    • Connecting to a CSV File
    • Connecting to a Webpage
    • Extracting Characters
    • Splitting and Merging Columns
    • Creating Conditional Columns
    • Creating Columns from Examples
    • Create Data Model

bottom of page