top of page
SKILLAI.png
w13.jpg
  • No-code course, Excel, MySQL, Tableau & Power BI

  • 6 months program with 200+ learning hours

  • 1 Client/live project with internship experience certificate

DATA ANALYTICS COURSES

download__1_-removebg-preview.png
4.9 (56,150) reviews
opop_edited.png
Accredited by
Screenshot_2025-12-05_180311-removebg-preview.png
3+ Live
Projects
Gemini_Generated_Image_s0vt7ks0vt7ks0vt-removebg-preview_edited.png
Skill AI 
Certificate 
DATA ANALYTICS CERTIFICATION AUTHORITIES
SKILLAI.png
Nasscom-logo-svg.png
download__2_-removebg-preview (1).png
DATA ANALYTICS COURSE FEE

Live Virtual

Instructor Led Live Online

₹55,221
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

NASSCOM Certification

6-Month | 200+ Learning Hours

20 HOURS LEARNING A WEEK

10 Capstone & 1 Client Project

365 Days Flexi Pass + Cloud Lab

Internship + Job Assistance

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Blended Learning

Self Learning + Live Mentoring

₹32,505
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Self Learning + Live Mentoring

NASSCOM Certification

1 Year Access To Elearning

10 Capstone & 1 Client Project

Job Assistance

24*7 Leaner assistance and support

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Classroom

In - Person Classroom Training

₹60,432
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

NASSCOM Certification
6-Month | 200+ Learning Hours

20 HOURS LEARNING A WEEK

10 Capstone & 1 Client Project

Cloud Lab Access

Internship + Job Assistance

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Most Advanced Data Analytics Training Course That Cover All In-demand Tools &
Technologies

Gemini_Generated_Image_qktlaoqktlaoqktl.png
Financing Options

We are dedicated to making our programs accessible. We are committed to helping you find a way to budget for this program and offer a variety of financing options to make it more economical.

Pay In Installments, as low as
We have partnered with the following financing companies to provide competitive finance options at as low as
0% interest rates with no hidden cost.
495-4954654_download-hd-1-bajaj-finserv-logo-png-transparent-removebg-preview.png
shopse-removebg-preview.png
Admission Closes On : 31st December 2026
gradient.png

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

WHY SKILL AI INSTITUTE FOR DATA ANALYTICS COURSES
Gemini_Generated_Image_dmhcjzdmhcjzdmhc-removebg-preview_edited.png

Expert Trainers

PH.Ds AND INDUSTRY EXPERTS

ELITE FACULTY FROM PRESTIGIOUS
UNIVERSITIES WITH DEEP RESEARCH
AND COACHING EXPERTISE

Specialized Syllabus

SPECIALIZED SYLLABUS FOR MANAGERS

PERSONALIZED COUNSELLING FOR CAREER​
ENHANCEMENT IN MANAGERIAL ROLES
FOCUSED ON DATA SCIENCE FOR DECISION MAKING,
MANAGING DATA SCIENCE PROJECTS WITH ESSENTIAL TECHNICAL OVERVIEW

Career Guidance

EXPERT COUNSELORS

TECHNIQUES FOR SCENARIOS WITH CERTAINTY,
LOW UNCERTAINTY AND HIGH CERTAINTY FROM
DECISION TREE TO MONTE CARLO SIMULATION

5 Case Studies

PRACTICAL DECISION-MAKING CASES

SYLLABUS OF DATA ANALYSIS COURSES
  • MODULE 1: DATA ANALYSIS FOUNDATION

     • Data Analysis Introduction
     • Data Preparation for Analysis
     • Common Data Problems
     • Various Tools for Data Analysis
     • Evolution of Analytics domain
     

    MODULE 2: CLASSIFICATION OF ANALYTICS

     • Four types of the Analytics
     • Descriptive Analytics

     • Diagnostics Analytics
     • Predictive Analytics

     • Prescriptive Analytics

     • Human Input in Various type of Analytics

    • Introduction to CRIP-DM Model
    • Business Understanding

    • Data Understanding

    • Data Preparation

    • Modeling, Evaluation, Deploying,Monitoring

    MODULE 3: CRIP-DM Model

    MODULE 4: UNIVARIATE DATA ANALYSIS

     • Summary statistics -Determines the value’s center and spread.
     • Measure of Central Tendencies: Mean, Median and Mode

     • Measures of Variability: Range, Interquartile range, Variance and Standard Deviation
     •Frequency table -This shows how frequently various values occur.
     • Charts -A visual representation of the distribution of values.
     

    MODULE 5: DATA ANALYSIS WITH VISUAL CHARTS

     • Line Chart
     • Column/Bar Chart
     • Waterfall Chart

    • Tree Map Chart
    • Box Plot

    MODULE 6: BI-VARIATE DATA ANALYSIS

     • Scatter Plots
     • Regression Analysis
     • Correlation Coefficients
     

  • MODULE 1: PYTHON BASICS 

     • Introduction of python
     • Installation of Python and IDE
     • Python Variables
     • Python basic data types
     • Number & Booleans, strings
     • Arithmetic Operators
     • Comparison Operators
     • Assignment Operators

    MODULE 3: PYTHON DATA STRUCTURES 

     • Basic data structure in python
     • Basics of List
     • List: Object, methods
     • Tuple: Object, methods
     • Sets: Object, methods
     • Dictionary: Object, methods

    MODULE 4: PYTHON FUNCTIONS 

     • Functions basics
     • Function Parameter passing
     • Lambda functions
     • Map, reduce, filter functions

    MODULE 2: PYTHON CONTROL STATEMENTS

     • IF Conditional statement
    • IF-ELSE
    • NESTED IF
    • Python Loops basics
    • WHILE Statement
    • FOR statements
    • BREAK and CONTINUE statements

  • MODULE 1: OVERVIEW OF STATISTICS 

     • Introduction to Statistics
     • Descriptive And Inferential Statistics
     • Basic Terms Of Statistics
     • Types Of Data

    MODULE 2: HARNESSING DATA 

     • Random Sampling
     • Sampling With Replacement And Without Replacement
     • Cochran's Minimum Sample Size
     • Types of Sampling
     • Simple Random Sampling
     • Stratified Random Sampling
     • Cluster Random Sampling
     • Systematic Random Sampling
     • Multi stage Sampling
     • Sampling Error
     • Methods Of Collecting Data

    MODULE 3: EXPLORATORY DATA ANALYSIS 

    • Exploratory Data Analysis Introduction
     • Measures Of Central Tendencies: Mean,Median And Mode
     • Measures Of Central Tendencies: Range, Variance And Standard Deviation
     • Data Distribution Plot: Histogram
     • Normal Distribution & Properties
     • Z Value / Standard Value
     • Empirical Rule and Outliers
     • Central Limit Theorem
     • Normality Testing
     • Skewness & Kurtosis
     • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
     • Covariance & Correlation

    MODULE 4: HYPOTHESIS TESTING 

     • Hypothesis Testing Introduction
     • P- Value, Critical Region
     • Types of Hypothesis Testing
     • Hypothesis Testing Errors : Type I And Type II
     • Two Sample Independent T-test
     • Two Sample Relation T-test
     • One Way Anova Test
     • Application of Hypothesis testing

  • MODULE 1: COMPARISION AND CORRELATION ANALYSIS

     

    • Data comparison Introduction,

     • Concept of Correlation
     • Calculating Correlation with Excel

    • Comparison vs Correlation

    • Hands-on case study : Comparison Analysis

    • Hands-on case study Correlation Analysis

    MODULE 2: VARIANCE AND FREQUENCY ANALYSIS

     • Variance Analysis Introduction
     • Data Preparation for Variance Analysis
     • Performing Variance and Frequency Analysis
     • Business use cases for Variance Analysis

     • Business use cases for Frequency Analysis

    MODULE 3: RANKING ANALYSIS

     • Introduction to Ranking Analysis
     • Data Preparation for Ranking Analysis
     • Performing Ranking Analysis with Excel
     • Insights for Ranking Analysis
     • Hands-on Case Study: Ranking Analysis

    MODULE 4: BREAK EVEN ANALYSIS

     • Concept of Breakeven Analysis
     • Make or Buy Decision with Break Even
     • Preparing Data for Breakeven Analysis

     • Hands-on Case Study: Manufacturing

    MODULE 5: PARETO (80/20 RULE) ANALSYSIS

     • Pareto rule Introduction
     •  Preparation Data for Pareto Analysis,

     • Performing Pareto Analysis on Data

     • Insights on Optimizing Operations with Pareto Analysis

     • Hands-on case study: Pareto Analysis

    MODULE 6: Time Series and Trend Analysis

     • Introduction to Time Series Data
     • Preparing data for Time Series Analysis
     • Types of Trends

     • Trend Analysis of the Data with Excel

    • Insights from Trend Analysis

    MODULE 7: DATA ANALYSIS BUSINESS REPORTING

     • Management Information System Introduction
     • Various Data Reporting formats
     • Creating Data Analysis reports as per the requirements

  • MODULE 1: DATA ANALYTICS FOUNDATION

     • Business Analytics Overview
     • Application of Business Analytics
     • Benefits of Business Analytics
     • Challenges
     • Data Sources

     • Data Reliability and Validity

    MODULE 2: OPTIMIZATION MODELS

    • Predictive Analytics with Low Uncertainty;Case Study
     • Mathematical Modeling and Decision Modeling
     • Product Pricing with Prescriptive Modeling

     • Assignment 1 : KERC Inc, Optimum Manufacturing Quantity

    MODULE 3: PREDICTIVE ANALYTICS WITH REGRESSION

     • Mathematics behind Linear Regression
     • Case Study : Sales Promotion Decision with Regression Analysis
     • Hands on Regression Modeling in Excel

    MODULE 4: DECISION MODELING

     • Predictive Analytics with High Uncertainty

     • Case Study-Monte Carlo Simulation

     • Comparing Decisions in Uncertain Settings

     • Trees for Decision Modeling

     • Case Study : Supplier Decision Modeling - Kickathlon Sports Retailer

  • MODULE 1: MACHINE LEARNING INTRODUCTION

     •  What Is ML? ML Vs AI 
     • ML Workflow, Popular ML Algorithms
     • Clustering, Classification And Regression

     • Supervised Vs Unsupervised

    MODULE 2: ML ALGO: LINEAR REGRESSSION

     • Introduction to Linear Regression
     • How it works: Regression and Best Fit Line
     • Hands-on Linear Regression with ML Tool

    MODULE 3: ML ALGO: LOGISTIC REGRESSION

     • Introduction to Logistic Regression;
     • Classification & Sigmoid Curve
     • Hands-on Logistics Regression with ML Tool

    MODULE 4: ML ALGO: KNN

     • Introduction to KNN; Nearest Neighbor
     • Regression with KNN
     • Hands-on: KNN with ML Tool

    MODULE 5: ML ALGO: K MEANS CLUSTERING

     • Decision Tree and How it works
     • Hands-on: Decision Tree with ML Tool

     • Understanding Clustering (Unsupervised)
     • Introduction to KMeans and How it works
     • Hands-on: K Means Clustering

    MODULE 6: ML ALGO: DECISION TREE

    MODULE 7: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

    MODULE 8: ARTIFICIAL NEURAL NETWORK (ANN)

     • Introduction to ANN, How It Works
     • Back propagation, Gradient Descent
     • Hands-on: ANN with ML Tool

    • Introduction to SVM
    • How It Works: SVM Concept, Kernel Trick
    • Hands-on: SVM with ML Tool

  • MODULE 1: DATABASE INTRODUCTION 

     • DATABASE Overview
     • Key concepts of database management
     • Relational Database Management System
     • CRUD operations

    MODULE 2:  SQL BASICS

     • Introduction to Databases
     • Introduction to SQL
     • SQL Commands
     • MY SQL workbench installation

    MODULE 3: DATA TYPES AND CONSTRAINTS

     • Numeric, Character, date time data type
     • Primary key, Foreign key, Not null
     • Unique, Check, default, Auto increment

    MODULE 4: DATABASES AND TABLES (MySQL)

    • Create database
     • Delete database
     • Show and use databases
     • Create table, Rename table
     • Delete table, Delete table records
     • Create new table from existing data types
     • Insert into, Update records
     • Alter table

    MODULE 5: SQL JOINS 

     • Inner Join, Outer Join
     • Left Join, Right Join
     • Self Join, Cross join
     • Windows function: Over, Partition, Rank

    MODULE 6: SQL COMMANDS AND CLAUSES 

    • Select, Select distinct
     • Aliases, Where clause
     • Relational operators, Logical
     • Between, Order by, In
     • Like, Limit, null/not null, group by
     • Having, Sub queries

    MODULE 7 : DOCUMENT DB/NO-SQL DB 

     • Introduction of Document DB
     • Document DB vs SQL DB
     • Popular Document DBs
     • MongoDB basics
     • Data format and Key methods

  • MODULE 1: BIG DATA INTRODUCTION

     • Big Data Overview
     • Five Vs of Big Data
     • What is Big Data and Hadoop
     • Introduction to Hadoop
     • Components of Hadoop Ecosystem
     • Big Data Analytics Introduction

    MODULE 2: HDFS AND MAP REDUCE

    • HDFS – Big Data Storage
     • Distributed Processing with Map Reduce
     • Mapping and reducing stages concepts
     • Key Terms: Output Format, Partitioners, Combiners, Shuffle, and Sort

    MODULE 3: PYSPARK FOUNDATION

    • PySpark Introduction
    • Spark Configuration
    • Resilient distributed datasets (RDD)
    • Working with RDDs in PySpark
    • Aggregating Data with Pair RDDs

    MODULE 4: SPARK SQL and HADOOP HIVE

     • Introducing Spark SQL
     • Spark SQL vs Hadoop Hive

  • MODULE 1: TABLEAU FUNDAMENTALS

     • Introduction to Business Intelligence & Introduction to Tableau
     • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.

     • Bar chart, Tree Map, Line Chart
    • Area chart, Combination Charts, Map
    • Dashboards creation, Quick Filters
    • Create Table Calculations
    • Create Calculated Fields
    • Create Custom Hierarchies

    MODULE 2: POWER-BI BASICS

    • Power BI Introduction
    • Basics Visualizations
    • Dashboard Creation
    • Basic Data Cleaning
    • Basic DAX FUNCTION

    MODULE 3: DATA TRANSFORMATION TECHNIQUES

     • Exploring Query Editor
    • Data Cleansing and Manipulation:
    • Creating Our Initial Project File
    • Connecting to Our Data Source
    • Editing Rows
    • Changing Data Types
    • Replacing Values

    MODULE 4: CONNECTING TO VARIOUS DATA SOURCES

     • Introduction to Business Intelligence & Introduction to Tableau
     • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.

     • Bar chart, Tree Map, Line Chart
    • Area chart, Combination Charts, Map
    • Dashboards creation, Quick Filters
    • Create Table Calculations
    • Create Calculated Fields
    • Create Custom Hierarchies

bottom of page