top of page
SKILLAI.png
w13.jpg
  • Course covers Python, Machine learning, concepts in Computer Vision, NLP, GAN and other AI key areas

  • Intensive 5-month Classroom/LVC Training and 5-month LIVE Project mentoring.

  • Unlimited access to Artificial Intelligence Cloud Lab for practice.

ARTIFICIAL INTELLIGENCE COURSES

download__1_-removebg-preview.png
 4.9 (36,100) reviews
opop_edited.png
Accredited by
Screenshot_2025-12-05_180311-removebg-preview.png
3+ Live
Projects
Gemini_Generated_Image_s0vt7ks0vt7ks0vt-removebg-preview_edited.png
Skill AI 
Certificate 
ARTIFICIAL INTELLIGENCE CERTIFICATION AUTHORITIES
SKILLAI.png
Nasscom-logo-svg.png
download__2_-removebg-preview (1).png
ARTIFICIAL INTELLIGENCE COURSE FEE

Live Virtual

Instructor Led Live Online

₹55,221
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

NASSCOM® Certification

9-Month | 780 Learning Hours

100-Hour Live Online Training10 Capstone & 1 Client Project

365 Days Flexi Pass + Cloud Lab

Internship + Job Assistance

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Blended Learning

Self Learning + Live Mentoring

₹32,505
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Self Learning + Live Mentoring

NASSCOM® Certification

1 Year Access To Elearning

 10 Capstone & 1 Client Project

Job Assistance

24*7 Leaner assistance and support

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Classroom

In - Person Classroom Training

₹60,432
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

NASSCOM® Certification

9-Month | 780 Learning Hours

100-Hour Classroom Sessions

10 Capstone & 1 Client Project

Cloud Lab Access

Internship + Job Assistance

check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png
check-removebg-preview-removebg-preview.png

Most Advanced Artificial Intelligence (AI) Training Course That Cover All In-demand Tools & Technologies

Gemini_Generated_Image_223o9d223o9d223o.png
Financing Options

We are dedicated to making our programs accessible. We are committed to helping you find a way to budget for this program and offer a variety of financing options to make it more economical.

Pay In Installments, as low as
We have partnered with the following financing companies to provide competitive finance options at as low as
0% interest rates with no hidden cost.
495-4954654_download-hd-1-bajaj-finserv-logo-png-transparent-removebg-preview.png
shopse-removebg-preview.png
Admission Closes On : 31st December 2026
gradient.png

ARE YOU LOOKING TO UPSKILL YOUR TEAM ?

WHY SKILL AI INSTITUTE FOR ARTIFICIAL INTELLIGENCE COURSES
Gemini_Generated_Image_dmhcjzdmhcjzdmhc-removebg-preview_edited.png

Expert Trainers

PH.Ds AND INDUSTRY EXPERTS

ELITE FACULTY FROM PRESTIGIOUS
UNIVERSITIES WITH DEEP RESEARCH
AND COACHING EXPERTISE

Specialized Syllabus

SPECIALIZED SYLLABUS FOR MANAGERS

PERSONALIZED COUNSELLING FOR CAREER​
ENHANCEMENT IN MANAGERIAL ROLES
FOCUSED ON DATA SCIENCE FOR DECISION MAKING,
MANAGING DATA SCIENCE PROJECTS WITH ESSENTIAL TECHNICAL OVERVIEW

Career Guidance

EXPERT COUNSELORS

TECHNIQUES FOR SCENARIOS WITH CERTAINTY,
LOW UNCERTAINTY AND HIGH CERTAINTY FROM
DECISION TREE TO MONTE CARLO SIMULATION

5 Case Studies

PRACTICAL DECISION-MAKING CASES

SYLLABUS OF ARTIFICAL INTELLIGENCE COURSES
  • MODULE 1 : ARTIFICIAL INTELLIGENCE OVERVIEW 

    • Evolution Of Human Intelligence
    • What Is Artificial Intelligence?
    • History Of Artificial Intelligence
    • Why Artificial Intelligence Now?
    • Areas Of Artificial Intelligence
    • AI Vs Data Science Vs Machine Learning

    MODULE 2 :  DEEP LEARNING INTRODUCTION

    • Deep Neural Network
    • Machine Learning vs Deep Learning
    • Feature Learning in Deep Networks
    • Applications of Deep Learning Networks

    MODULE3 : TENSORFLOW FOUNDATION

    • TensorFlow Structure and Modules
    • Hands-On:ML modeling with TensorFlow

    MODULE 4 : COMPUTER VISION INTRODUCTION

    • Image Basics
    • Convolution Neural Network (CNN)
    • Image Classification with CNN
    • Hands-On: Cat vs Dogs Classification with CNN Network

    MODULE 5 : NATURAL LANGUAGE PROCESSING (NLP)

    • NLP Introduction
    • Bag of Words Models
    • Word Embedding
    • Hands-On:BERT Algorithm

    MODULE 6 : AI ETHICAL ISSUES AND CONCERNS

    • Issues And Concerns Around Ai
    • Ai And Ethical Concerns
    • Ai And Bias
    • Ai:Ethics, Bias, And Trust

  • MODULE 1: PYTHON BASICS 

     • Introduction of python
     • Installation of Python and IDE
     • Python Variables
     • Python basic data types
     • Number & Booleans, strings
     • Arithmetic Operators
     • Comparison Operators
     • Assignment Operators

    MODULE 2: PYTHON CONTROL STATEMENTS 

     • IF Conditional statement
     • IF-ELSE
     • NESTED IF
     • Python Loops basics
     • WHILE Statement
     • FOR statements
     • BREAK and CONTINUE statements

    MODULE 3: PYTHON DATA STRUCTURES 

     • Basic data structure in python
     • Basics of List
     • List: Object, methods
     • Tuple: Object, methods
     • Sets: Object, methods
     • Dictionary: Object, methods

    MODULE 4: PYTHON FUNCTIONS 

     • Functions basics
     • Function Parameter passing
     • Lambda functions
     • Map, reduce, filter functions

  • MODULE 1: OVERVIEW OF STATISTICS 

     • Introduction to Statistics
     • Descriptive And Inferential Statistics
     • Basic Terms Of Statistics
     • Types Of Data

    MODULE 2: HARNESSING DATA 

     • Random Sampling
     • Sampling With Replacement And Without Replacement
     • Cochran's Minimum Sample Size
     • Types of Sampling
     • Simple Random Sampling
     • Stratified Random Sampling
     • Cluster Random Sampling
     • Systematic Random Sampling
     • Multi stage Sampling
     • Sampling Error
     • Methods Of Collecting Data

    MODULE 3: EXPLORATORY DATA ANALYSIS 

    • Exploratory Data Analysis Introduction
     • Measures Of Central Tendencies: Mean,Median And Mode
     • Measures Of Central Tendencies: Range, Variance And Standard Deviation
     • Data Distribution Plot: Histogram
     • Normal Distribution & Properties
     • Z Value / Standard Value
     • Empirical Rule and Outliers
     • Central Limit Theorem
     • Normality Testing
     • Skewness & Kurtosis
     • Measures Of Distance: Euclidean, Manhattan And Minkowski Distance
     • Covariance & Correlation

    MODULE 4: HYPOTHESIS TESTING 

     • Hypothesis Testing Introduction
     • P- Value, Critical Region
     • Types of Hypothesis Testing
     • Hypothesis Testing Errors : Type I And Type II
     • Two Sample Independent T-test
     • Two Sample Relation T-test
     • One Way Anova Test
     • Application of Hypothesis testing

  • MODULE 1: MACHINE LEARNING INTRODUCTION 

     • What Is ML? ML Vs AI
     • Clustering, Classification And Regression
     • Supervised Vs Unsupervised

    MODULE 2:  PYTHON NUMPY  PACKAGE 

     • Introduction to Numpy Package
     • Array as Data Structure
     • Core Numpy functions
     • Matrix Operations, Broadcasting in Arrays

    MODULE 3:  PYTHON PANDAS PACKAGE 

     • Introduction to Pandas package
     • Series in Pandas
     • Data Frame in Pandas
     • File Reading in Pandas
     • Data munging with Pandas

    MODULE 4: VISUALIZATION WITH PYTHON - Matplotlib

    • Visualization Packages (Matplotlib)
     • Components Of A Plot, Sub-Plots
     • Basic Plots: Line, Bar, Pie, Scatter

    MODULE 5: PYTHON VISUALIZATION PACKAGE - SEABORN

    • Seaborn: Basic Plot
     • Advanced Python Data Visualizations

    MODULE 6: ML ALGO: LINEAR REGRESSSION

     • Introduction to Linear Regression
     • How it works: Regression and Best Fit Line
     • Modeling and Evaluation in Python

    MODULE 7: ML ALGO: LOGISTIC REGRESSION

     • Introduction to Logistic Regression
     • How it works: Classification & Sigmoid Curve
     • Modeling and Evaluation in Python

    MODULE 8: ML ALGO: K MEANS CLUSTERING

     • Understanding Clustering (Unsupervised)
     • K Means Algorithm
     • How it works : K Means theory
     • Modeling in Python

    MODULE 9: ML ALGO: KNN

     • Introduction to KNN
     • How It Works: Nearest Neighbor Concept
     • Modeling and Evaluation in Python

  • MODULE 1: FEATURE ENGINEERING 

     • Introduction to Feature Engineering
     • Feature Engineering Techniques: Encoding, Scaling, Data Transformation
     • Handling Missing values, handling outliers
     • Creation of Pipeline
     • Use case for feature engineering

    MODULE 2: ML ALGO: SUPPORT VECTOR MACHINE (SVM)

     • Introduction to SVM
     • How It Works: SVM Concept, Kernel Trick
     • Modeling and Evaluation of SVM in Python

    MODULE 3: PRINCIPAL COMPONENT ANALYSIS (PCA)

     • Building Blocks Of PCA
     • How it works: Finding Principal Components
     • Modeling PCA in Python

    MODULE 4:  ML ALGO: DECISION TREE 

    • Introduction to Decision Tree & Random Forest
     • How it works
     • Modeling and Evaluation in Python

    MODULE 5: ENSEMBLE TECHNIQUES - BAGGING

     • Introduction to Ensemble technique 
     • Bagging and How it works
     • Modeling and Evaluation in Python

    MODULE 6: ML ALGO: NAÏVE BAYES

     • Introduction to Naive Bayes
     • How it works: Bayes' Theorem
     • Naive Bayes For Text Classification
     • Modeling and Evaluation in Python

    MODULE 7: GRADIENT BOOSTING, XGBOOST

     • Introduction to Boosting and XGBoost
     • How it works?
     • Modeling and Evaluation of in Python

  • MODULE 1: TIME SERIES FORECASTING - ARIMA 

    • What is Time Series?
     • Trend, Seasonality, cyclical and random
     • Stationarity of Time Series
     • Autoregressive Model (AR)
     • Moving Average Model (MA)
     • ARIMA Model
     • Autocorrelation and AIC
     • Time Series Analysis in Python 

    MODULE 2: SENTIMENT ANALYSIS

     • Introduction to Sentiment Analysis
     • NLTK Package
     • Case study: Sentiment Analysis on Movie Review

    MODULE 3: REGULAR EXPRESSIONS WITH PYTHON 

     • Regex Introduction
     • Regex codes
     • Text extraction with Python Regex

    MODULE 4:  ML MODEL DEPLOYMENT WITH FLASK 

    • Introduction to Flask
     • URL and App routing
     • Flask application – ML Model deployment

    MODULE 5: ADVANCED DATA ANALYSIS WITH MS EXCEL

     • MS Excel core Functions
     • Advanced Functions (VLOOKUP, INDIRECT..)
     • Linear Regression with EXCEL
     • Data Table
     • Goal Seek Analysis
     • Pivot Table
     • Solving Data Equation with EXCEL

    MODULE 6:  AWS CLOUD FOR DATA SCIENCE

     • Introduction of cloud
     • Difference between GCC, Azure, AWS
     • AWS Service ( EC2 instance)

    MODULE 7: AZURE FOR DATA SCIENCE

     • Introduction to AZURE ML studio
     • Data Pipeline
     • ML modeling with Azure

    MODULE 8:  INTRODUCTION TO DEEP LEARNING

     • Introduction to Artificial Neural Network, Architecture
     • Artificial Neural Network in Python
     • Introduction to Convolutional Neural Network, Architecture
     • Convolutional Neural Network in Python

  • MODULE 1: DATABASE INTRODUCTION 

     • DATABASE Overview
     • Key concepts of database management
     • Relational Database Management System
     • CRUD operations

    MODULE 2:  SQL BASICS

     • Introduction to Databases
     • Introduction to SQL
     • SQL Commands
     • MY SQL workbench installation

    MODULE 3: DATA TYPES AND CONSTRAINTS

     • Numeric, Character, date time data type
     • Primary key, Foreign key, Not null
     • Unique, Check, default, Auto increment

    MODULE 4: DATABASES AND TABLES (MySQL)

    • Create database
     • Delete database
     • Show and use databases
     • Create table, Rename table
     • Delete table, Delete table records
     • Create new table from existing data types
     • Insert into, Update records
     • Alter table

    MODULE 5: SQL JOINS 

     • Inner Join, Outer Join
     • Left Join, Right Join
     • Self Join, Cross join
     • Windows function: Over, Partition, Rank

    MODULE 6: SQL COMMANDS AND CLAUSES 

    • Select, Select distinct
     • Aliases, Where clause
     • Relational operators, Logical
     • Between, Order by, In
     • Like, Limit, null/not null, group by
     • Having, Sub queries

    MODULE 7 : DOCUMENT DB/NO-SQL DB 

     • Introduction of Document DB
     • Document DB vs SQL DB
     • Popular Document DBs
     • MongoDB basics
     • Data format and Key methods

  • MODULE 1: GIT  INTRODUCTION 

    • Purpose of Version Control
     • Popular Version control tools
     • Git Distribution Version Control
     • Terminologies
     • Git Workflow
     • Git Architecture

    MODULE 2: GIT REPOSITORY and GitHub 

    • Git Repo Introduction
     • Create New Repo with Init command
     • Git Essentials: Copy & User Setup
     • Mastering Git and GitHub

    MODULE 3: COMMITS, PULL, FETCH AND PUSH

     • Code Commits
     • Pull, Fetch and Conflicts resolution
     • Pushing to Remote Repo

    MODULE 4: TAGGING, BRANCHING AND MERGING

     • Organize code with branches
     • Checkout branch
     • Merge branches
     • Editing Commits
     • Commit command Amend flag
     • Git reset and revert

    MODULE 5: GIT WITH GITHUB AND BITBUCKET

     • Creating GitHub Account
     • Local and Remote Repo
     • Collaborating with other developers

  • MODULE 1: BIG DATA INTRODUCTION 

    • Big Data Overview
     • Five Vs of Big Data
     • What is Big Data and Hadoop
     • Introduction to Hadoop
     • Components of Hadoop Ecosystem
     • Big Data Analytics Introduction

    MODULE 2 : HDFS AND MAP REDUCE 

    • HDFS – Big Data Storage
     • Distributed Processing with Map Reduce
     • Mapping and reducing stages concepts
     • Key Terms: Output Format, Partitioners,

    MODULE 3: PYSPARK FOUNDATION

    • PySpark Introduction
     • Spark Configuration
     • Resilient distributed datasets (RDD)
     • Working with RDDs in PySpark
     • Aggregating Data with Pair RDDs

    MODULE 4: SPARK SQL and HADOOP HIVE

     • Introducing Spark SQL
     • Spark SQL vs Hadoop Hive

  • MODULE 1: TABLEAU FUNDAMENTALS 

    • Introduction to Business Intelligence & Introduction to Tableau
     • Interface Tour, Data visualization: Pie chart, Column chart, Bar chart.
     • Bar chart, Tree Map, Line Chart
     • Area chart, Combination Charts, Map
     • Dashboards creation, Quick Filters
     • Create Table Calculations
     • Create Calculated Fields
     • Create Custom Hierarchies

    MODULE 2:  POWER-BI BASICS

    • Power BI Introduction 
     • Basics Visualizations
     • Dashboard Creation
     • Basic Data Cleaning
     • Basic DAX FUNCTION

    MODULE 3 : DATA TRANSFORMATION TECHNIQUES

    • Exploring Query Editor
     • Data Cleansing and Manipulation:
     • Creating Our Initial Project File
     • Connecting to Our Data Source
     • Editing Rows
     • Changing Data Types
     • Replacing Values

    MODULE 4: CONNECTING TO VARIOUS DATA SOURCES 

    • Connecting to a CSV File
     • Connecting to a Webpage
     • Extracting Characters
     • Splitting and Merging Columns
     • Creating Conditional Columns
     • Creating Columns from Examples
     • Create Data Model

  • MODULE 1: NEURAL NETWORKS

     • Structure of neural networks
     • Neural network - core concepts(Weight initialization)
     • Neural network - core concepts(Optimizer)
     • Neural network - core concepts(Need of activation)
     • Neural network - core concepts(MSE & RMSE)
     • Feed forward algorithm
     • Backpropagation

    MODULE 2: IMPLEMENTING DEEP NEURAL NETWORKS 

     • Introduction to neural networks with tf2.X
     • Simple deep learning model in Keras (tf2.X)
     • Building neural network model in TF2.0 for MNIST dataset

    MODULE 3: DEEP COMPUTER VISION - IMAGE RECOGNITION

    • Convolutional neural networks (CNNs)
    • CNNs with Keras-part1
    • CNNs with Keras-part2
    • Transfer learning in CNN
    • Flowers dataset with tf2.X(part-1)
    • Flowers dataset with tf2.X(part-2)
    • Examining x-ray with CNN model

    MODULE 4 : DEEP COMPUTER VISION - OBJECT DETECTION

     • What is Object detection
     • Methods of Object Detections
     • Metrics of Object detection
     • Bounding Box regression
     • labelimg
     • RCNN
     • Fast RCNN
     • Faster RCNN
     • SSD
     • YOLO Implementation
     • Object detection using cv2

    MODULE 5: RECURRENT NEURAL NETWORK

    • RNN introduction
    • Sequences with RNNs
    • Long short-term memory networks(part 1)
    • Long short-term memory networks(part 2)
    • Bi-directional RNN and LSTM
    • Examples of RNN applications

    MODULE 6: NATURAL LANGUAGE PROCESSING (NLP)

    • Introduction to Natural language processing
    • Working with Text file
    • Working with pdf file
    • Introduction to regex
    • Regex part 1
    • Regex part 2
    • Word Embedding
    • RNN model creation
    • Transformers and BERT
    • Introduction to GPT (Generative Pre-trained Transformer)
    • State of art NLP and projects

    MODULE 7: PROMPT ENGINEERING

    • Introduction to Prompt Engineering
    • Understanding the Role of Prompts in AI Systems
    • Design Principles for Effective Prompts
    • Techniques for Generating and Optimizing Prompts
    • Applications of Prompt Engineering in Natural Language Processing

    MODULE 8: REINFORCEMENT LEARNING

    • Markov decision process
    • Fundamental equations in RL
    • Model-based method
    • Dynamic programming model free methods

    MODULE 9: DEEP REINFORCEMENT LEARNING

    • Architectures of deep Q learning
    • Deep Q learning
    • Reinforcement Learning Projects with OpenAI Gym

    MODULE 10: Gen AI

    • Gan introduction, Core Concepts, and Applications
    • Core concepts of GAN
    • GAN applications
    • Building GAN model with TensorFlow 2.X
    • Introduction to GPT (Generative Pre-trained Transformer)
    • Building a Question answer bot with the models on Hugging Face

    MODULE 11: Gen AI

    • Introduction to Autoencoder
    • Basic Structure and Components of Autoencoders
    • Types of Autoencoders: Vanilla, Denoising, Variational, Sparse, and Convolutional Autoencoders
    • Training Autoencoders: Loss Functions, Optimization Techniques
    • Applications of Autoencoders: Dimensionality Reduction, Anomaly Detection, Image

bottom of page